首页> 外文OA文献 >The semi-variogram and spectral distortion measures for image texture retrieval
【2h】

The semi-variogram and spectral distortion measures for image texture retrieval

机译:图像纹理检索的半变差函数和谱失真度量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Semi-variogram estimators and distortion measures of signal spectra are utilized in this paper for image texture retrieval. On the use of the complete Brodatz database, most high retrieval rates are reportedly based on multiple features, and the combinations of multiple algorithms; while the classification using single features is still a challenge to the retrieval of diverse texture images. The semi-variogram, which is theoretically sound and the cornerstone of spatial statistics, has the characteristics shared between true randomness and complete determinism; and therefore can be used as a useful tool for both structural and statistical analysis of texture images. Meanwhile, spectral distortion measures derived from the theory of linear predictive coding provide a rigorously mathematical model for signal-based similarity matching, and have been proven useful for many practical pattern classification systems. Experimental results obtained from testing the proposed approach using the complete Brodatz database, and the UIUC texture database suggest the effectiveness of the proposed approach as a single-feature-based dissimilarity measure for real-time texture retrieval.
机译:本文利用半变异函数估计器和信号频谱的失真度量来进行图像纹理检索。据报道,在使用完整的Brodatz数据库时,大多数检索率都基于多种功能以及多种算法的组合。虽然使用单一特征进行分类仍然是检索不同纹理图像的挑战。半变异函数在理论上是合理的,是空间统计的基石,具有真正随机性和完全确定性之间的共同特征。因此可以用作纹理图像的结构和统计分析的有用工具。同时,源自线性预测编码理论的频谱失真量度为基于信号的相似度匹配提供了严格的数学模型,并已被证明对许多实用的模式分类系统有用。通过使用完整的Brodatz数据库和UIUC纹理数据库测试提出的方法而获得的实验结果表明,提出的方法作为实时纹理检索的基于单特征的相异性度量的有效性。

著录项

  • 作者

    Pham, Tuan D.;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号